# San Ace 40 9CRH type

## **Counter Rotating Fan**

#### Features

#### **High Static Pressure**

The maximum static pressure has increased by 62% compared with our current model\*.

It provides effective cooling especially for high density equipment.

#### **High Energy Efficiency and Low Noise**

Power consumption and noise level have been reduced by approximately 10% and 3 dB(A), respectively, compared with our current model. Furthermore, the PWM control function enables the external control of fan speed, contributing to even lower noise and higher energy efficiency of devices.

\* Current model: San Ace 40 9CRV type 40 x 40 x 56 mm Counter Rotating Fan, model no. 9CRV0412P5J201



## 40×40×56 mm

### Specifications

The following nos. have PWM controls, pulse sensors.

| Model no.      | Rated voltage [V] | Operating voltage range [V] | PWM<br>duty cycle <sup>*</sup><br>[%] | Rated current [A] | Rated input<br>[W] | Rated spe<br>Inlet |       | Max. a<br>[m³/min] | irflow<br>[CFM] |      | tic pressure<br>[inchH <sub>2</sub> O] | SPL<br>[dB(A)] | Operating temperature [°C] | Expected<br>life<br>[h] |
|----------------|-------------------|-----------------------------|---------------------------------------|-------------------|--------------------|--------------------|-------|--------------------|-----------------|------|----------------------------------------|----------------|----------------------------|-------------------------|
| 9CRH0412P5J001 | 12                | 10.8 to 12.6                | 100                                   | 2.52              | 30.24              | 29500              | 25500 | 0.93               | 32.9            | 1700 | 6.83                                   | 70             | -20 to +70                 | 30000/60°C              |
|                |                   |                             | 20                                    | 0.06              | 0.72               | 3000               | 2600  | 0.08               | 2.8             | 17   | 0.07                                   | 20             |                            |                         |

<sup>\*</sup> PWM frequency: 25 kHz. Fan does not rotate when PWM duty cycle is 0%.

Models with the following sensor specifications are also available as options: Without sensor Lock sensor

#### Common Specifications

Material ...... Frame: Plastics (Flammability: UL 94V-0), Impeller: Plastics (Flammability: UL 94V-0)

☐ Expected life · · · · · · Refer to specifications

(L10: Survival rate: 90% at 60°C, rated voltage, and continuously run in a free air state)

☐ Motor protection system · · · · · · · Current blocking function and reverse polarity protection

☐ Dielectric strength · · · · · · · 50/60 Hz, 500 VAC, 1 minute (between lead conductor and frame)

☐ Sound pressure level (SPL) · · · · · · Expressed as the value at 1 m from air inlet side

☐ Operating temperature · · · · · · · Refer to specifications (Non-condensing)

☐ Storage temperature · · · · · · · · · · · · · · · 30 to +70°C (Non-condensing)

☐ Lead wire · · · · · · Inlet: ⊕ Red ⊖ Black Sensor: Yellow Control: Brown

Outlet: 

Orange 

Gray Sensor: Purple Control: White

☐ Mass · · · · · Approx. 110 g

#### Airflow - Static Pressure Characteristics

#### PWM duty cycle (inch H<sub>2</sub>O) (Pa) 8.0 <sub>—</sub> 2000 PWM duty cycle 1800 7.0 100% 1600 6.0 Static pressure 1400 5.0 1200 4.0 - 1000 800 3.0 600 2.0 1.0 200 0 L 0.8 35 (CFM) 10 15 20 25 30 Airflow



Airflow

#### PWM Duty -Speed Characteristics Example



#### PWM Input Signal Example

#### Input signal waveform



 $V_{IH} = 2.8 \text{ to } 5.25 \text{ V}$   $V_{IL} = 0 \text{ to } 0.4 \text{ V}$ PWM duty cycle (%) =  $\frac{T_1}{T}$  ×100 PWM frequency 25 (kHz) =  $\frac{1}{3}$ Current source (Isource) = 2 mA max. (when control voltage is 0 V) Current sink (Isink) = 2 mA max. (when control voltage is 5.25 V) Control terminal voltage = 5.25 V max. (when control terminal is open)

When the control terminal is open, fan speed is the same as when PWM duty cycle is 100%. Either TTL input, open collector or open drain can be used for PWM control input signal.

### Example of Connection Schematic



#### Specifications for Pulse Sensors

#### Output circuit: Open collector



#### Output waveform (Need pull-up resistor)

In case of steady running



#### Dimensions (unit: mm)



#### Reference Dimensions of Mounting Holes and Vent Opening (unit: mm)

#### Inlet side, Outlet side



#### **Notice**

- ●Please read the "Safety Precautions" on our website before using the product.
- The products shown in this catalog are subject to Japanese Export Control Law. Diversion contrary to the law of exporting country is prohibited.
- For protecting fan bearings against electrolytic corrosion near strong electromagnetic noise sources, we provide effective countermeasures such as Electrolytic Corrosion Proof Fans and EMC guards. Contact us for details.

https://www.sanyodenki.com